
Basic Shell Script Examples
Bash (Bourne Again Shell) is a popular Unix and Linux command-line interpreter and
scripting language. Shell scripting in Bash refers to the process of writing scripts using the
Bash shell, which enables users to create scripts that run a series of commands, control
flow, and carry out complex tasks. It also provides a flexible and powerful environment for
automating tasks and performing complex operations efficiently on Unix and Linux systems.
In this article, you can find some basic shell script examples that will give you a good
insight into basic shell scripting as a beginner.

Table of Contents

Getting Started with Shell Script 2
How to Write and Execute a Bash Script in Linux 2

Step 1: Create a Shell Script in Linux 3
Step 2: Running the “Hello World” Script 4

Basic Bash Scripts 5
Variables in Shell Scripting 5

Example 1: Defining Variables in a Bash Script 5
Example 2: Read, Store and Display User Input using Bash Script 6
Example 3: Read User Input with Prompt Message using Bash Script 6
Example 4: Concatenating Multiple Variables 6
Example 5: Passing Values to Variables as Command Line Arguments 7
Example 6: Print Environment Variable using Bash Script 7

Operators in Shell Scripting 8
Example 1: Adding Two Numbers using Bash Script 8
Example 2: Subtracting Two Numbers using Bash Script 9
Example 3: Division of Two Numbers using Bash Script 9
Example 4: Calculating the Remainder of a Division using Bash Script 9
Example 5: Generating a Random Number Between 1 and 50 Using Bash Script9
Example 6: Generating a Random Number Between Two Given Numbers 10
Example 7: Performing Multiple Mathematical Operations in a Script 10
Example 8: Performs a Bitwise Operation Based on User Input 11

Conditionals in Shell Scripting 11
The syntax for Conditional Statements in Shell Scripting 11
Example 1: Check if a Number is an Even or Odd 12
Example 2: Perform an Arithmetic Operation Based on User Input 12
Example 3: Performs a Logical Operation Based on User Input 13

https://linuxsimply.com/basic-shell-script-examples/
https://linuxsimply.com/bash-in-linux/

Example 4: Check if a Given Input is a Valid Email ID 14
Example 5: Check if a Given Input is a Valid URL 14
Example 6: Check if a Given Number is Positive or Negative 14
Example 7: Check if a File is Writable 15
Example 8: Check if a File Exists or Not 15
Example 9: Check if a Directory Exists or Not 16

Miscellaneous Bash Scripts 16
Example 1: Echo with New Line 16
Example 2: Changing Internal Field Separator(IFS)/Delimiter 16
Example 3: Take Two Command Line Arguments and Calculates their Sum 17
Example 4: Take Password Input 17
Example 5: Take Timed Input 17

Conclusion 18

Getting Started with Shell Script
Shell scripting is the process of writing a series of commands, control structures, and
variables in a script file that the shell can execute line by line. To get started with shell
scripting, you first have to learn how to write a bash script and make it executable. In this
article, you will learn how to write bash scripts, how to make those scripts executable, and
how to run them. So let’s get started.

SheBang (#!) in Shell Scripting
While writing a bash script, you must start with a line that is called SheBang(#!). It specifies
the interpreter or shell that should be used to run the script. The shebang line starts with a
hash symbol (#) and ends with an exclamation mark (!). The path to the interpreter
executable is provided immediately after the exclamation mark. So, in shell scripting, the
syntax would be #!/bin/bash. However, the path specified after the exclamation mark may
differ depending on the interpreter's location on the system.

The shebang line is required because it allows scripts to be executed directly from the
command line by invoking the script file rather than explicitly specifying the interpreter each
time. It ensures that the script is run with the appropriate interpreter, allowing the script's
commands and logic to be executed.

The syntax for SheBang (#!) in Shell Scripting is given below:

#!/bin/bash

NOTE: You must write the SheBang(#!) on the very first line of the Script.

How to Write and Execute a Bash Script in Linux
Here, I will demonstrate how to write a shell script and then how to execute and run it. I will
create a script that will print Hello World to the users after running it. I will be using the

https://linuxsimply.com/cli-in-linux/

user's private “bin” folder since the “bin” directory can automatically be added to the $PATH
variable. For editing the script, I will use the “nano” text editor. Now, follow the steps below
to write the script in Linux.

Step 1: Create a Shell Script in Linux
To create and write the shell script follow the steps below.
Steps to follow >
➊First, Launch an Ubuntu Terminal using the shortcut keys CTRL+ALT+T.
➋ Then, create a bin folder in your home directory by typing the following command.

mkdir bin

Explanation
● mkdir: Creates a Directory.
● bin: User’s private bin directory.

💡 NOTE: You can skip this step if the directory is already created.

➌ After that, create a bash script file inside the bin directory with the command below.

nano bin/hello_world.sh

Explanation:
● nano: Creates/edits text files with Nano text editor.
● hello_world.sh: File for writing the bash script.

❹ Now, write the following script in hello_world.sh file.

#!/bin/bash

echo "Hello World"

❺ To save and exit from the script, press CTRL+S and CTRL+X respectively.
❻ Now, Type the following to make the script executable for the current user in your system.

https://linuxsimply.com/mkdir-command-in-linux/

chmod u+rwx bin/hello_world.sh

Explanation
● chmod: Changes folder permissions.
● u+rwx: Adds read, write, and execute permissions for the current user.
● hello_world.sh: the bash script file.

❼ Finally, restart your system to add the newly created bin directory to the $PATH variable
by typing the command below.

reboot

Restarting the system by default runs the .profile script which adds the user’s private bin
directory to $PATH and makes the files inside the bin directory accessible for every shell
session.

Step 2: Running the “Hello World” Script
After restarting the system you will be able to run the “hello_world.sh” script from any path
under the current user account. To learn how you can execute the script follow the steps
below.
Steps to follow:
➊ At first, press CTRL+ALT+T to open the Ubuntu Terminal.
➋ Run the previously written script by simply typing the file name and hitting ENTER.

bash hello_world.sh

In the above image, you can see that, I successfully ran the created “hello_world.sh” script.
The “Hello World” message is displayed on the terminal from that script.

Basic Bash Scripts
Bash, like any other programming language, adheres to a set of rules and syntaxes. It is
essential to begin a bash script with the shebang line (#!). This line instructs the system
which interpreter to use when running the script. Following the shebang, you specify the path
to the bash executable program, which is typically found at /bin/bash.
In addition to becoming acquainted with Linux commands, it is important to learn other
fundamental aspects of shell scripting. These are divided into three categories, including
variables, operators, and conditionals.

Variables in Shell Scripting
Variables are containers that hold important information in shell scripting. They serve as
system memory locations capable of storing characters, numeric values, or alphanumeric
values. By referencing the variable names, these values can be accessed and manipulated.
In shell scripting, the variable name is combined with a dollar sign ($), such as
$VARIABLE_NAME.
The syntax for Variables in Shell Scripting is given below:

VARIABLE_NAME=VALUE

The rules for Variables in Shell Scripting are as follows:

● Use the equal sign (=) to assign values to variable names which indicates that the
value on the right-hand side is assigned to the variable on the left-hand side.

● Variable names are case-sensitive, so pay attention to capitalization when referring to
variables.

● To refer to the value stored in a variable, use the dollar sign ($) followed by the
variable name.

● When updating or changing the value of a variable, only use the variable name
followed by the assignment operator (=) and the new value.

● You don't need to explicitly define the variable type when declaring variables as the
shell interprets the value assigned to a variable accordingly.

● To enclose multiple words or string values within a variable, use single quotes (' ') as
it ensures that all the characters within the quotes are considered as part of the input
for the variable.

Example 1: Defining Variables in a Bash Script
In Bash Script, declare a variable by assigning(=) value to its reference. Furthermore, print
the assigned values using echo $(VARIABLE_NAME).
Code:

https://linuxsimply.com/commands/

#!/bin/bash

Declaration of variables

name=Tom

age=12

Displaying variables

echo $name $age

Output:
Tom 12

Example 2: Read, Store and Display User Input using Bash
Script
You can take user input with the read command and store it in a variable. Next, use echo
$(VARIABLE_NAME) to print the user input.
Code:
#!/bin/bash

echo "Enter a number:"

read num

echo "The number is: $num"

Output:
Enter a number:

12

The number is: 12

Example 3: Read User Input with Prompt Message using
Bash Script
The read command used with option -p allows you to prompt a message along with taking
user input. You can use echo $(VARIABLE_NAME) to display the user input on the screen.
Code:
#!/bin/bash

read -p "Enter a number:" num

echo "The number is: $num"

Output:
#!/bin/bash

read -p "Enter a number:" num

echo "The number is: $num"

Example 4: Concatenating Multiple Variables
You can concatenate multiple variables and store it into a single variable by enclosing them
with a double quotation (“ ”).

Code:
#!/bin/bash

Declaration of variables

name='My name is Tom.'

age='My age is 12.'

Concatenation

info="${name} ${age}"

echo "Result: $info"

Output:
Result: My name is Tom. My age is 12.

Example 5: Passing Values to Variables as Command Line
Arguments
For passing values as command line arguments, you have to run the script along the values
in a sequence. Later access these values using the $ and input sequence number.
Code:
#!/bin/bash

name=$1

age=$2

echo "My name is $name. My age is $age."

✅Syntax to run the Script: bash bin/var_example5.sh Tom 12

Output:
My name is Tom. My age is 12.

Example 6: Print Environment Variable using Bash Script
You can store an Environment Variable in a regular manner and print it using ${!..} syntax.
Code:

#!/bin/bash

read -p "Enter an Environment Variable name:" var

echo "Environment:${!var}"

Output:
Enter an Environment Variable name:

HOME

Environment:/home/anonnya

Operators in Shell Scripting
Shell scripting provides a wide range of operators to help with a variety of tasks. These
operators can be chosen based on your script's output requirements and variables. To make
things easier, I've divided the operators in Bash Scripting into five categories. This
classification will help you better understand and apply the operators.

Arithmetic Operators Numeric Operators Logical Operators Bitwise Operators

+ (Addition) -lt (Less
than)

&& Or, -a (AND) & (AND)

- (Subtraction) -gt (Greater
than)

|| Or, -o (OR) | (OR)

* (Multiplication) -eq (Equal) ! (NOT) ! (NOT)

/ (Division) -ne (Not equal) ^ (XOR)

% (Modulous) -le (Less or
equal)

<< (Left shift)

++ (Increment) -ge (Greater or
equal)

>> (Right
shift)

- - (Decrement)

Example 1: Adding Two Numbers using Bash Script
Run an addition operation using the “+” operator between defined variables.
Code:
#!/bin/bash

num1=10

num2=20

sum=$(($num1+$num2))

echo "The Sum is: $sum"

Output:
The Sum is: 30

Example 2: Subtracting Two Numbers using Bash Script
Subtract two numbers using the “-” operator between defined variables.
Code:
#!/bin/bash

num1=30

num2=20

dif=$(($num1-$num2))

echo "The difference is: $dif"

Output:
The difference is: 10

Example 3: Division of Two Numbers using Bash Script
Run a division using the “/” operator between defined variables.
Code:
#!/bin/bash

num1=30

num2=5

div=$(($num1/$num2))

echo "The division is: $div

Output:
The division is: 6

Example 4: Calculating the Remainder of a Division using
Bash Script
For generating the remainder of a division use the “%” operator between defined variables.
Code:
#!/bin/bash

num1=30

num2=20

mod=$(($num1%$num2))

echo "The remainder is: $mod"

Output:
The remainder is: 10

Example 5: Generating a Random Number Between 1 and
50 Using Bash Script
Utilize the RANDOM function of bash for generating random numbers in a range.
Code:

#!/bin/bash

echo $((1 + RANDOM % 50))

Output:
27

Example 6: Generating a Random Number Between Two
Given Numbers
Generate random numbers of specified numbers by calculating range and with the
RANDOM function.
Code:
#!/bin/bash

read -p "Enter minimum range:" min

read -p "Enter maximum range:" max

r_num=$(($RANDOM % ($max - $min + 1) + $min))

echo "Random Number: $r_num"

Output:
Enter minimum range:10

Enter maximum range:35

Random Number: 24

Example 7: Performing Multiple Mathematical Operations
in a Script
Perform multiple operations using echo without storing the results into another variable.
Code:
#!/bin/bash

read -p "Enter a number:" num1

read -p "Enter a smaller number:" num2

echo "Addition: $(($num1 + $num2))"

echo "Subtraction: $(($num1 - $num2))"

echo "Multiplication: $(($num1 * $num2))"

echo "Division: $(($num1 / $num2))"

Output:
Enter a number:35

Enter a smaller number:15

Addition: 50

Subtraction: 20

Multiplication: 525

Division: 2

Example 8: Performs a Bitwise Operation Based on User
Input
The given script performs either of the bitwise AND, OR, NOT operations on the 2 input
numbers. If the user enters any other operand as input then the script displays and error
message.
Code:
#!/bin/bash

read -p "Enter two numbers: " num1 num2

read -p "Enter operation to perform (AND, OR, NOT): " op

case $op in

AND) echo "Result: $num1 & $num2 = $((num1&num2))";;

OR) echo "Result: $num1 | $num2 = $((num1|num2))";;

NOT) echo "Result: $num1 ^ $num2 = $((num1^num2))";;

*) echo "Invalid operator.";;

esac

Output:
Enter two numbers: 4 5

Enter operation to perform (AND, OR, NOT): AND

Result: 4 & 5 = 4

Conditionals in Shell Scripting
Conditional statements are essential for automating tasks with shell scripting. These
statements allow specific codes to be executed based on the fulfillment of certain conditions.
A basic conditional statement in programming languages evaluates a condition and executes
the associated code block if the condition is met. There are four types of conditional
statements in Bash Scripting. To learn more about the syntax of conditional statements
follow the table given below.

The syntax for Conditional Statements in Shell Scripting
if if-else if-elif-else case

if [condition
]; then

#code
fi

if [condition
]; then

#code
else

#code
fi

if [condition1
]; then

#code
elif [
condition2];
then

#code
else

#code
fi

case expression
in
pattern1)

#code;;
pattern2)

#code;;
*)

#code if
expression
doesn't match
any patterns;;

esac

Example 1: Check if a Number is an Even or Odd
Check odd and even numbers with simple if-else conditions.
Code:
#!/bin/bash

read -p "Enter a number:" num

if [$((num%2)) == 0]

then

echo "The number is even"

else

echo "The number is odd"

fi

Output:
Enter a number:25

The number is odd

Example 2: Perform an Arithmetic Operation Based on
User Input
To perform user input based operations implement the if-elif-else condition.
Code:
!/bin/bash

read -p "Enter a number:" num1

read -p "Enter a smaller number:" num2

read -p "Enter an operand:" op

if [$op == +]

then

echo "$num1 + $num2 = $((num1+num2))"

elif [$o == -]

then

echo "$num1 - $num2 = $((num1-num2))"

elif [$op == *]

then

echo "$num1 * $num2 = $((num1*num2))"

elif [$op == /]

then

echo "$num1 / $num2 = $((num1/num2))"

else

echo "Operator not listed"

fi

Output:

Enter a number:34

Enter a smaller number:14

Enter an operand:+

34 + 14 = 48

Example 3: Performs a Logical Operation Based on User
Input
You can perform user input based operations with the case statement as well.
Code:
#!/bin/bash

read -p "Enter two values: " val1 val2

read -p "Enter an operation(and/or/not) to perform:" op

case $op in

and)

if [[$val1 == true && $val2 == true]]

then

echo "Result: true"

else

echo "Result: false"

fi;;

or)

if [[$val1 == true || $val2 == true]]

then

echo "Result: true"

else

echo "Result: false"

fi;;

not)

if [[$val1 == true]]

then

echo "Result: false"

else

echo "Result: true"

fi;;

*) echo "Invalid operator."

esac

Output:
Enter two values: true false

Enter an operation(and/or/not) to perform:or

Result: true

Example 4: Check if a Given Input is a Valid Email ID
A valid email can be checked by defining the email syntax inside the if condition.

Code:
#!/bin/bash

read -p "Enter an email ID: " id

if [[$id =~ ^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}$]]

then

echo "This is a valid email ID!"

else

echo "This is not a valid email ID!"

fi

Output:
Enter an email ID: tom@gmail.com

Example 5: Check if a Given Input is a Valid URL
To check a valid URL use a simple if-else condition with the URL pattern inside the
condition.
Code:
#!/bin/bash

read -p "Enter a URL: " url

if [[$url =~ ^(http|https)://[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}$]]

then

echo " This is a valid URL!"

else

echo "This is not a valid URL!"

fi

Output:
Enter a URL: abcdefg1234

This is not a valid URL!

Example 6: Check if a Given Number is Positive or
Negative
Check if a given number is positive or negative with comparison operators inside the
if-elif-else condition.
Code:
#!/bin/bash

read -p "Enter a number:" num

if [$num -gt 0]

then

echo "The number is Positive!"

elif [$num -lt 0]

then

echo "The number is Negative!"

else

echo "The number is Zero!!"

fi

Output:
Enter a number:12

The number is Positive!

Example 7: Check if a File is Writable
You can verify file permissions inside if-else condition. For this, the write permission is
checked with the -w notation.
Code:
#!/bin/bash

read -p "Enter a File Name:" fname

if [-w $fname]

then

echo "The File $fname is writable."

else

echo "The File $fname is not writable."

fi

Output:
Enter a File Name:file1.txt

The File file1.txt is writable.

Example 8: Check if a File Exists or Not
Check a file's existence in the current directory using the -f notation.
Code:
#!/bin/bash

read -p "Enter a File Name:" fname

if [! -f $fname]

then

echo "The File $fname does not exist!"

exit 1

fi

echo "The File $fname exists."

Output:
Enter a File Name:myfile.txt

The File myfile.txt does not exist!

Example 9: Check if a Directory Exists or Not
Check a directory's existence in the current folder using the -d notation.

Code:
#!/bin/bash

read -p "Enter a Filename: " dir

if [! -d $dir]

then

echo "The directory $dir does not exist!"

exit 1

fi

echo "The directory $dir exists."

Output:
Enter a Filename: bin

The directory bin exists.

Miscellaneous Bash Scripts
Besides learning the categorized shell scripts example, the following basic scripts will give
you a hands-on experience in bash scripting.

Example 1: Echo with New Line
Modify the usage of the echo command with -e and \n to print messages in a new line.
Code:
#!/bin/bash

echo -e 'Hi\nthere!'

Output:
Hi

there!

Example 2: Changing Internal Field
Separator(IFS)/Delimiter
You can modify the default Internal Field Separator of bash by accessing the IFS variable.
By changing the IFS you will be able to access values separated by your desired delimiter.
After this task again restore the original IFS to avoid any error.
Code:
#!/bin/bash

#store default IFS

old_IFS= $IFS

IFS=,

read val1 val2 val3 <<< "5,60,70"

echo 1st value: $val1

echo 2nd value: $val2

echo 3rd value: $val3

#restore default IFS

IFS= $old_IFS;

Output:
1st value: 5

2nd value: 60

3rd value: 70

Example 3: Take Two Command Line Arguments and
Calculates their Sum
You can do direct mathematical operations on command line arguments using the $((..)).
Code:
#!/bin/bash

sum=$(($1 + $2))

echo "The sum of $1 and $2 is $sum"

✅Syntax to run the Script: bash misc_example3.sh 20 30

Output:
The sum of 20 and 30 is 50

Example 4: Take Password Input
In bash, you can utilize the read command for taking password type inputs. Application of
read with -sp option hides the input characters when you type them.
Code:
#!/bin/bash

read -sp "Enter your password: " pass

echo -e "\nYour password is: $pass"

Output:
Enter your password:

Your password is: linuxsimply

Example 5: Take Timed Input
You can take timed input in bash using the read command with -t option. The prompt
message will disappear if you do not complete entering your values within the specified time.
Code:
#!/bin/bash

read -t 5 -p "Enter your name within 5 seconds: " name

Output:

Enter your name within 5 seconds: Anonnya

Conclusion
Finally, in this article, I have tried to provide some simple shell script examples to
familiarise you with the power and flexibility of shell scripting. You can now customize and
automate any system based on specific needs after learning the basics of shell scripting.
Although this article has only scratched the surface of shell scripting, this solid foundation
will make you well-prepared to explore the vast world of shell scripting and give you the
ability to master it in less time.

Prepared By: Lamisa Musharrat Web View: Basic Shell Script Examples

Copyright ©2023 linuxsimply.com| All rights reserved

https://linuxsimply.com/what-is-a-shell-linux/
https://linuxsimply.com/lamisa-musharrat/
https://linuxsimply.com/basic-shell-script-examples/

